

### The oKtopure<sup>™</sup> and sbeadex<sup>®</sup> plant nucleic acid extraction kit

Dr Heiko Hauser, Dr Dietrich Köster and Dr Frank Schubert, LGC Genomics, Ostendstrasse 25, TGS Haus 8, 12459 Berlin, Germany

#### Introduction

Reliable, standardised and high quality DNA preparations, delivered by chemistry-adapted robotic platforms are key elements of many genomics based plant breeding programs. Global breeding cycles and the need to test an ever increasing number of samples are driving the need for automated extraction platforms which combine high throughput with the delivery of highly purified DNA.

The oKtopure instrument from LGC Genomics, delivers increased throughput with extraction protocols optimised for the magnetic bead based sbeadex<sup>®</sup> chemistry. The system provides nucleic acid preparations suitable for downstream processing applications such as SNP genotyping or sequencing. Cost efficiencies are realised through reduced consumable requirements delivered by an offline wash station which enables the re-use of tips up to 40 times, saving as much as 50% over alternative platforms.

#### oKtopure overview

The oKtopure is a small footprint robotic platform which utilizes 8 magnetic "underdeck" stations to hold beads in place during nucleic acid extraction while the 96 tip head automatically transfers lysing solutions and washing buffers. Holding the beads while moving liquids allows a significant increase in DNA yield and quality in comparison to other systems.

| Tips for<br>ffers  |   |            |   | Tips for<br>ates |       | Wash<br>station |
|--------------------|---|------------|---|------------------|-------|-----------------|
|                    | т | т          | T | T                | Т     | w               |
|                    | т | ТТ         | T | T                | т     |                 |
| в                  | L | М          | E | L                | м     | E               |
| в                  | L | М          | E | L                | м     | E               |
| в                  | L | М          | E | L                | м     | E               |
| в                  | L | M          | E | ۹L               | м     | Ee              |
| buffer<br>servoirs |   | M: magnets |   | Lysis            | olate | Elution         |

**Figure 1:** Desk overview of the oKtopure system; 8 magnetic devices provide 8, in parallel processing sites. Plant cell lysis and homogenisation is done offline, after incubation and spinning down of cell debris the supernatant is transferred to the process site  $(L \rightarrow M)$ . Here, the main extraction steps take place including initial binding to the sbeadex beads, washing, second binding, pure water wash step and final elution. The pure DNA is transferred finally to the Elution Plate (M  $\rightarrow$  E).

The table 1 provides a specification overview for the oKtopure instrument used in combination with the sbeadex<sup>®</sup> chemistry.

| Table 1: | Specification | overview - | oKtopure and | sbeadex® | plant |
|----------|---------------|------------|--------------|----------|-------|
|----------|---------------|------------|--------------|----------|-------|

| Key features of the oKtopure / sbeadex® system | Specification                                  |
|------------------------------------------------|------------------------------------------------|
| Elution volume                                 | 100 µL                                         |
| Format / robotic platform                      | oKtopure                                       |
| Sample type                                    | Plant samples ( leaves, seeds, flour etc.)     |
| Chemistry                                      | sbeadex <sup>®</sup> plant                     |
| Final wash                                     | 2 binding steps; final wash with<br>pure water |
| Grade of automation                            | Full walk away automation                      |
| Nucleic acid purification type                 | DNA                                            |
| Average yield sbeadex® mini                    | 1 - 15 µg                                      |
| Average yield sbeadex® maxi                    | 20 - 80 µg                                     |



**Figure 2:** The flexibility of the oKtopure is driven by the ability to adapt the sbeadex chemistry on any type of plant sample. Typically, a manual protocol is developed and transferred to the robot including technical configuration to guarantee optimised extraction.

## Example plant species validated with oKtopure and or sbeadex<sup>®</sup> for nucleic acid extraction

A key advantage of the oKtopure / sbeadex<sup>®</sup> combination is the capacity for the development of customised protocols to deliver DNA of suitable quality for any downstream processing requirement. In applications where the standard protocol is not able to deliver DNA preparations of required quality or yield, our application team can establish unique protocols and buffer / lysis reagent combinations. The table below provides examples of plant materials previously validated using the system:

**Table 2:** Overview of plant species and sample types for which optimised extraction protocols have been validated and established; as plant samples might differ in composition and DNA yields, optimised protocols are available for most of the plant species using improved lysis conditions and other changes in the standard protocol.

| Plant species                     | Leaves       | Seeds        |
|-----------------------------------|--------------|--------------|
| Apricot (Prunus armeniaca)        | $\checkmark$ |              |
| Barley (Hordeum vulgare)          | $\checkmark$ | $\checkmark$ |
| Beet, sugar (Beta vulgaris)       | $\checkmark$ |              |
| Canola / Oilseed (Brassica napus) | $\checkmark$ | $\checkmark$ |
| Chicory (Cichorium intybus)       | $\checkmark$ |              |
| Corn (Zea mays)                   | $\checkmark$ | $\checkmark$ |
| Cotton (Gossypium)                | $\checkmark$ | $\checkmark$ |
| Cucumber (Cucumis sativus)        | $\checkmark$ | $\checkmark$ |
| Flax (Linum usitatissimum)        | $\checkmark$ |              |
| Grape (Vitis vinifera)            | $\checkmark$ | $\checkmark$ |
| Lettuce (Lactuca sativa)          | $\checkmark$ |              |
| Muskmelon (Cucumis melo)          | $\checkmark$ | $\checkmark$ |

| Onion (Allium cepa)                | $\checkmark$ | ~            |
|------------------------------------|--------------|--------------|
| Parsley (Petroselinum crispum)     | $\checkmark$ | $\checkmark$ |
| Peach (Prunus persica)             | $\checkmark$ |              |
| Pepper (Capsicum annuum)           | $\checkmark$ | $\checkmark$ |
| Potato (Solanum tuberosum)         | $\checkmark$ |              |
| Rice, Asian (Oryza sativa)         | $\checkmark$ | $\checkmark$ |
| Rubber (Hevea brasiliensis)        | $\checkmark$ | $\checkmark$ |
| Soybean (Aphis glycines)           | $\checkmark$ | $\checkmark$ |
| Sunflower (Helianthus annuus)      | $\checkmark$ | $\checkmark$ |
| Tobacco leaves (Nicotiana tabacum) | $\checkmark$ | $\checkmark$ |
| Tomato (Solanum lycopersicum)      | $\checkmark$ | $\checkmark$ |
| Wheat (Triticum L.)                | $\checkmark$ | $\checkmark$ |

# The oKtopure and sbeadex<sup>®</sup> - an example study with rice leaves

The sbeadex<sup>®</sup> plant kit (Cat. No. 41601, 41602, 41610 and 41620) has been developed to extract genomic DNA from a wide variety of plant materials (leaves, seeds, fruits, etc.) and can be used for a wide range of plant types without customisation. The magnetic particle based DNA extraction protocol can be easily automated using the oKtopure.

Figure 3 demonstrates the key step in sbeadex<sup>®</sup> coated magnetic particles binding DNA sbeadex<sup>®</sup> uses a novel two-step binding mechanism in the presence of detergents and salts. After binding and washing steps, the purified DNA is released in the elution buffer. The sbeadex<sup>®</sup> mini and maxi plant kit is supplied with ready-to-use buffers.



**Figure 3:** sbeadex<sup>®</sup> unique technology includes a two step binding mechanism enables users a second wash step using pure water. This results in higher yields, higher DNA purity and efficiently removes all inhibiting salts and alcohols. As no alcohol is used, drying and evaporation of the DNA is not necessary resulting in a time, money and waste minimising extraction,

#### Materials and methods

#### Extraction protocol summary

As described above, high quality DNA preparations can be delivered using the standarised protocols through the combination of sbeadex chemistry and oKtopure automation from more than 90% of plant species. To demonstrate the utility of the standard protocol DNA was extracted from a set of rice leaf samples as described below. Further details of the protocol are provide in Appendix 1. Table 3: Short protocol for sbeadex® extractions from rice leaves.

| Extraction step      | Incubation time (mins) | Homogeneous RNAse treated rice lysate                                      |
|----------------------|------------------------|----------------------------------------------------------------------------|
| Binding              | 10                     | 520 µL binding buffer<br>60 µL sbeadex <sup>®</sup> beads<br>200 µL lysate |
| Wash 1               | 10                     | 400 µL                                                                     |
| Wash 2               | 10                     | 400 µL                                                                     |
| Wash aqua dest       | 10                     | 400 µL                                                                     |
| Elution - AMP buffer | 10                     | 100 µL                                                                     |

#### **Results and discussion**

To check the DNA quality and integrity we compared the DNA extractions on the oKtopure platform using the sbeadex<sup>®</sup> plant kit by gel electrophoresis and compared it to DNA extracted using an alternative automated extraction technology. Further assessment of DNA was made using UV quantification by NanoDrop measurement and PicoGreen to verify the quantification results.

#### UV quantification

Table 4: In total 32 samples were extracted using the oKtopure and another robotic platform; the DNA yields of the samples following extraction using sbeadex<sup>®</sup> magnetic beads have been measured by UV measurement / NanoDrop. To calculate the total DNA yields, the average yields were multiplied with the final elution volume.

| oKtopure | NanoDrop | oKtopure | NanoDrop |
|----------|----------|----------|----------|
| O1       | 6.026    | 09       | 5.253    |
| 02       | 4.812    | O10      | 4.860    |
| O3       | 6.215    | O11      | 5.908    |
| 04       | 5.258    | O12      | 5.185    |
| O5       | 5.808    | O13      | 4.989    |
| O6       | 4.786    | O14      | 5.318    |
| 07       | 5.456    | O15      | 5.649    |
| 08       | 4.513    | O16      | 5.684    |
| Media    | n conc.  | 5.3      | 358      |

| Alternative<br>platforms | NanoDrop | Alternative<br>platforms | NanoDrop |
|--------------------------|----------|--------------------------|----------|
| C1                       | 16.18    | C9                       | 17.85    |
| C2                       | 15.45    | C10                      | 11.43    |
| C3                       | 13.79    | C11                      | 10.51    |
| C4                       | 12.83    | C12                      | 10.44    |
| C5                       | 12.38    | C13                      | 16.23    |
| C6                       | 13.61    | C14                      | 10.25    |
| C7                       | 7.678    | C15                      | 9.974    |
| C8                       | 12.42    | C16                      | 10.9     |
| Mediar                   | n conc.  | 10,8                     | 812      |

#### **Gel electrophoresis**



**Figure 3:** 10  $\mu$ L of DNA extract were used for a 1% agarose gel electrophoresis to check DNA integrity and compare the DNA yields. UV measurements are often approximations as a result of contaminations and RNA which absorb light at the specified. wavelength. Therefore, gel electrophoresis is used to further compare the final DNA yields. The gel shows that there are no significant differences between the rice leaf samples extracted by the oKtopure and the competitor technology. **M:** Lambda DNA marker; **O:** oKtopure:10  $\mu$ L eluate on gel; **C:** competitor: 10  $\mu$ L eluate on gel;

#### **PicoGreen** quantification

**Table 5:** In total 32 samples have been extracted using the oKtopure and an alternative robotic platform; the DNA yields of the samples following extraction using sbeadex<sup>®</sup> magnetic beads have been measured by PicoGreen measurement. To calculate the total DNA yields, the average yields has been multiplied with the final elution volume. Finally, the relationship between the value averages of NanoDrop to PicoGreen measurement (which was adapated to be the gold standard here) has been calculated. The oKtopure / sbeadex<sup>®</sup> demonstrates higher final DNA yields in combination with a lower overestimation ratio.

| oKtopure              | PicoGreen     | oKtopure    | PicoGreen |
|-----------------------|---------------|-------------|-----------|
| O1                    | 1.777854      | 09          | 1.80181   |
| O2                    | 1.645073      | O10         | 1.903612  |
| O3                    | 1.861183      | O11         | 1.923925  |
| O4                    | 1.791884      | O12         | 2.027322  |
| O5                    | 1.883279      | O13         | 1.766547  |
| O6                    | 1.762134      | O14         | 2.03261   |
| 07                    | 1.785307      | O15         | 1.860785  |
| 08                    | 1.809242      | O16         | 2.008495  |
| Mediar                | n conc.       | 1.852       | 2.566     |
| Median total (100 µL) |               | 185.256.638 |           |
| Median Nanodrop       |               | 5.358       |           |
| Standard deviation    |               | 0.10737     |           |
| Over-estimatio        | n by NanoDrop | 3 x         |           |

| Alternative platforms | PicoGreen     | Alternative<br>platforms | PicoGreen |
|-----------------------|---------------|--------------------------|-----------|
| C1                    | 2.2009        | C9                       | 2.258941  |
| C2                    | 2.274683      | C10                      | 2.110072  |
| C3                    | 2.296872      | C11                      | 1.871759  |
| C4                    | 2.067473      | C12                      | 2.264135  |
| C5                    | 2.223487      | C13                      | 2.291074  |
| C6                    | 2.274683      | C14                      | 1.942433  |
| C7                    | 2.296872      | C15                      | 2.100731  |
| C8                    | 2.067473      | C16                      | 1.980573  |
| Media                 | n conc.       | 2.154.751                |           |
| Median total (100 µL) |               | 140.058.798              |           |
| Median NanoDrop       |               | 10,8812                  |           |
| Standard deviation    |               | 0.139747                 |           |
| Over-estimatio        | n by NanoDrop | 5 x                      |           |

#### Summary

oKtopure provides significant savings in processing time and consumables costs with no loss of DNA quality or yield.

#### Appendix 1: Standard rice leaf extraction protocol

- Add 250 μL of Lysis buffer PN to each sample and grind disruption and homogenisation of plant material and incubate at 65°C incl. RNase digestion for at least 10 minutes.
- 2. Centrifuge at 2.500 g for 10 minutes.
- The oKtopure transfers 200 µL lysate (oKtopure deck: position L → M) to prefilled 520 µL of Binding buffer PN and 60 µL sbeadex<sup>®</sup> particles (please take care that sbeadex<sup>®</sup> beads are fully re-suspended before using)
- 4. Mix thoroughly by pipetting up and down several times. Incubate for 10 minutes at room temperature to allow sufficient time for binding to occur.
- Bring magnet into contact with the sample tubes and Wait for 10 minutes at room temperature to allow the sbeadex<sup>®</sup> particles to form a pellet.
- The oKtopure removes the supernatant and discards the buffers. Ensure as much of the supernatant is removed as is possible without dislodging the particle pellet.
- 7. Move the magnet away from the sample tubes and add 400  $\mu L$  of Wash buffer PN 1 and re-suspend the pellet.
- 8. Mix thoroughly by pipetting up and down 5 times or until pellet is fully re-suspended.
- Incubate at room temperature for 10 minutes, agitating the sample during the time period. Bring magnet into contact with the sample tubes and wait for 10 minutes at room temperature to allow the sbeadex<sup>®</sup> particles to form a pellet.
- Remove the supernatant and discard. Ensure as much of the supernatant is removed as is possible without dislodging the particle pellet. Move the magnet away from the sample tubes.
- 11. Repeat steps with 400  $\mu$ L of Wash buffer PN 2 and repeat steps with 400  $\mu$ L of pure water.
- 12. Add 100 μL of Elution buffer PN and re-suspend the pellet.
- 13. Mix thoroughly and pipette up and down 5 times or until pellet is fully re-suspended. Vortex periodically and bring magnet into contact with the sample tubes. Wait for 10 minutes at room temperature to allow the sbeadex<sup>®</sup> particles to form a pellet.
- Remove the eluate and place into a new sample tube. To avoid particle transfer it is recommended to transfer only 80 μL of the eluate.

## Appendix 2: Cost saving available with oKotpure and sbeadex<sup>®</sup>

Costs per extraction is a crucial factor for high throughput applications. Depending on the robotic technology and the throughput of the project, there are costs for plastics between  $20-30 \in \text{cents}$  / extraction which add to the costs for each extraction. The oKtopure delivers a significant reduction in costs through an offline wash station which allows the re-use of tips up 30-40 times. Table 6 shows a direct comparison between the consumable costs of the oKtopure and other extraction platforms.

**Table 6:** Overview of costs for consumables for the differentsystems. The oKtopure can be ordered with and without theoffline washing system. Other technologies including liquidhandling systems and magnetic particle systems require increasedconsumables per extraction as there is no re-use of tips.

| Feature          | oKtopure<br>with washing | oKtopure<br>without<br>washing | Other<br>technologies |
|------------------|--------------------------|--------------------------------|-----------------------|
| Tips / sample    | No tips                  | 1 tip                          | 4-6 tips              |
| Grinding plate   | 1                        | 1                              | 1                     |
| Processing plate | 1                        | 1                              | 1-6                   |
| Elution plate    | 1                        | 1                              | 1                     |

#### **Appendix 3: Catalogue information**

**Table 7:** Catalogue numbers for oKtopure, sbeadex<sup>®</sup> and related products. The kits are available in different bulk formats of 960, 2500, 5000, 10000 and 40000 extractions per kit.

| Catalogue<br>number | Description                                                | Units      |
|---------------------|------------------------------------------------------------|------------|
| KBS-0009-001        | oKtopure high throughput DNA extraction robot              | 1          |
| KBS-0009-002        | oKtowash™, concentrated wash<br>buffer (500 mL)            | 1          |
| KBS-0009-003        | oKtopure off line tip wash option                          | 1          |
| KBS-0009-004        | oKtopure mix plates<br>(Thermo 1.2 mL deep well plate)     | 1          |
| KBS-0009-005        | Wash buffer bulk reservoirs (pack of 4)                    | 1          |
| KBS-0009-999        | Extended 12 month on-site fully inclusive service contract | 1          |
| NAP41610            | sbeadex <sup>®</sup> mini plant                            | 960 tests* |
| NAP41620            | sbeadex <sup>®</sup> maxi plant                            | 960 tests* |

 $({}^{*})$  sbeadex  ${}^{\otimes}$  plant kit is also available in different format for higher throughput customers, please contact customer service.



### www.lgcgenomics.com

Germany Ostendstr. 25 • TGS Haus 8 12459 Berlin

Tel: +49 (0) 30 5304 2200 Fax: +49 (0) 30 5304 2201 Email: info.de@lgcgenomics.com United Kingdom Unit 1-2 Trident Industrial Estate • Pindar Road Hoddesdon • Herts • EN11 0WZ

> Tel: +44 (0) 1992 470 757 Fax +44 (0) 1438 900 670 Email: info.uk@lgcgenomics.com

**USA** 100 Cummings Center • Suite 420H Beverly • MA 01915

242/1.00-2013-07 Tel: +1 (978) 232 9430 Fax: +1 (978) 232 9435 Email: info.us@lgcgenomics.com

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any retrieval system, without the written permission of the copyright holder. © LGC Limited, 2013. All rights reserved.